
 

i 

 

 

 

 
 
 

Design & Innovation Project (DIP) 

 

Project Report 
 
 

Design of an Automatic Review System 
 

Project Group: E012 
 
 
 
 
 
 
 
 
 

School of Electrical and Electronic Engineering 
Academic Year 2020/21 

Semester 1



 

2 

 

Table of Contents 

1. INTRODUCTION 3 

2. PROJECT SUMMARY 4 

3. SCOPE 5 

3.1 BACKGROUND KNOWLEDGE 5 

1) Convolutional Neural Network (CNN) 5 

2) Recurrent Neural Network and Long Short-Term Memory 5 

3) Rectified Linear Unit (ReLU) 6 

4) Pooling Layer 6 

5) Dropout 7 

6) Evaluation Metrics 8 

7) Attention 10 

8) Beam Search 10 

9) Word to Vector 11 

3.2 OVERVIEW OF MODELS 12 

Model 1 12 

Model 2 13 

Model 3 14 

3.3 INTRODUCTION TO DATASETS 14 

1. Flickr8k 14 

2. MSCOCO 15 

3. Food80k 15 

3.4 EXPERIMENTS AND EVALUATION 17 

Team 1 Encoder-Decoder architecture model without attention mechanism 17 

Team 2:  Encoder-Decoder architecture model with attention mechanism in MSCOCO on Colab 26 

Team 3  Apply encoder and decoder framework model with attention in food80k 34 

4. SCHEDULE 40 

5. COST 40 

6. OUTCOMES 40 

7.  REFLECTION 41 

8. REFERENCES 45 

APPENDIX 48 

 



 

3 

 

1. Introduction 
 

Food heavily influences customers’ physical well-being and is a critical contributor to their 

pleasure, worry, and stress (Rozin, P, 1999). On one hand, customers are exploring and 

looking for better food resources, on the other hand, all food suppliers are trying to provide 

competitively priced food products with high quality and better service (Wilcock, A, 2004). 

Therefore, food online ordering systems came out. The main purpose of an online ordering 

system is to offer customers an efficient way to make an order at a restaurant over the 

internet connection. With mobile applications and websites, customers can easily browse 

all available dishes in restaurants, customize orders to their requirements, and place orders. 

The needs of ordering food online are surging for recent years and especially for 

COVID_19 period (Chang, H, 2020).  

 

Nevertheless, the information provided by the business side is not a strong incentive for 

people to trust the quality of food. People need product validation from other customers to 

evaluate the alternative of the product (Mudambi, S, 2010). According to Search Engine 

Land's statistics, the overwhelming majority (90 percent) of customers read 10 reviews or 

fewer before they feel that they could trust business and more than half (60 percent) of 

these customers are looking for ordering food online. Although customer review is a critical 

component of online ordering services, writing a review is very time-consuming and 

customers often skip this process. Hence, we need a tool that could simplify the process of 

writing reviews to encourage customers to generate reviews. In this project, we aim to 

develop an automatic review system to assist users in writing review by automatically 

generating a review based on a given image.   

An automatic review system needs two parts -- food image processor and caption 

generation. Most previous attempts have proposed to apply image processing on food to 

estimate food calories and analyze people's eating habits for healthcare and also the safety 

level of food (Bossard, L, 2014). Also, many researchers are exploring image caption 

generators to help understand the scene and generate sentences over provided images (Baig, 

M, 2018). Thus, we proposed to utilize previous works and develop a system containing 

both components. 

In this report, we combined food image processor and caption generator to develop an 

automatic review system(ARS) to help customers easily write reviews and hence help the 

business side get more potential to sell out food online. After we reviewed the development 

process of image-caption-generator methods in recent years and compared their 

performances and costs, we chose to use the encoder-decoder framework which is easier to 

implement and costs less memory (Vinyals, O, 2015). This separated parts framework 

allows us to generate encoded features for image by using a Convolutional Neural Network 

(CNN, Encoder) and then generate a caption with extracted image features from CNN by 

using a Recurrent Neural Network (RNN, Decoder). Both CNN and RNN excel at their  

respective tasks, those being object identification and classification, and natural language 

processing tasks like machine translation respectively. With our proposed ARS, customers 



 

4 

 

only need to take a photo of food and can easily have a review-suggestion which is 

automatically generated by ARS.

 

2. Project Summary 
 

In order to create an automatic review system over food images, we tried to train a model 

which could generate captions based on food images provided by input. This kind of model 

normally needs two parts – food image processor and caption generator. Therefore, our 

model is in Encoder-Decoder architecture and we used some useful mechanisms, such as 

attention algorithm, word to vector, transfer learning and beam search. This separated parts 

framework allows us to generate encoded features for a food image by using a CNN 

(Encoder) and then generate a caption with extracted image features from CNN by using a 

Recurrent Neural Network (Decoder). To improve our models, we tried changing the size 

of word map, the dimension of embedding layer and even using pre-trained embedding 

layer (Glove). Our team is divided into three sub teams and each is provided with different 

jobs. Team 1 applies Encoder-Decoder architecture model without attention mechanism 

(Model 1: InceptionV3 + LSTM) on our food80k dataset, team2 applies Encoder-Decoder 

architecture model with attention mechanism (Model 2: InceptionV3 + LSTM) on 

MSCOCO dataset and team 3 applies Encoder-Decoder architecture model with attention 

mechanism (Model 3: ResNet101 + LSTM) on food80k dataset. We see some good results 

but also some unsatisfied output. Due to the variety of food and limited training dataset and 

time, there are still some limitations in our model, but we already have a clear plan about 

how to improve it furthermore. 

  



 

5 

 

3. Scope  
 

3.1 Background Knowledge 

 

In this section, we introduce the modules and also some mechanisms applied in our project. 

 

1) Convolutional Neural Network (CNN) 

 

One of the methods used to achieve object detection, image recognition, face recognition 

and image classification is the Convolutional Neural Network or CNN. CNN is the process 

of taking in an input image, process it and categorizing it (Prabhu, 2018). 

 

Unlike humans, computers view images as a set of pixels. The resolution of an image does 

play an important role too. Based on the resolution size of an image, the machine views it 

as Height x Width x Dimension. 

 

In CNN, there are hidden layers inside the Convolution layer that train and test each input 

image. Such hidden layers are: 

 

• Convolution (with ReLU) layer 

• Pooling layer 

• Fully connected layer 

 

 
Figure 1: CNN process. Source: (Prabhu, 2018) 

 

 

2) Recurrent Neural Network and Long Short-Term Memory 

 

The Recurrent Neural Network (RNN) is a type of Neural Network. In this network, the 

output that is given out from the previous step, is passed on to the current step as their input.  

 



 

6 

 

 
Figure 2: RNN (LTSM) process. Source: (Aladdin, 2020) 

 

 

As you can see from above, the output word “Giraffes” is being passed on to the next input. 

In this model, we are using “Long Short-Term Memory” or LSTM for short. It is a type of 

RNN that is able to learn order dependence in sequence prediction problems. LSTM is the 

solution to the sequence prediction problems.  

 

 

3) Rectified Linear Unit (ReLU) 

 

The ReLU is an activation function that is widely used in the deep learning models today. 

Said function will return a “0” if the input is a negative value. For a positive input, it will 

return the value back. 

f(x) = max(0,x) 

 

Being a nonlinear activation function, ReLU is important because functions that the model 

is trying to learn is nonlinear. Without using a nonlinear activation function, the model will 

not be able to achieve features such as image classification or text prediction. 

 

 

4) Pooling Layer 

 

The role of the pooling layer is to maximize the capabilities of the convolution. This is 

achieved by “Max Pooling”. Max pooling is done by taking a small sized pixel group, 

preferably 2x2 and applying it on the input image.  

 

Max pooling will take the largest value amongst the selected group of pixels.  

 



 

7 

 

 
Figure 3: Max pooling process. Source: (Zafra, n.d.) 

 

 
 

Figure 4: Result after applying Max pooling. Source: (Zafra, n.d.) 

 

After applying the Max pool function, the overall size of the image is being reduced. The 

size is being reduced by taking groups of 2x2 pixels and keeping only the maximum values. 

Also, the vertical edges are also highlighted more prominently. 

 

5) Dropout 

 

In a deep neural network with large parameters, overfitting tends to occur. An overfitted 

model learns the training dataset too well, resulting in a good performance on the training 

dataset but performs poorly when given an unseen dataset. One of the main reasons that 

causes overfitting is co-adaptation. (Peng, 2018) 

 

To overcome co-adaptation, dropout is used. It works by temporarily omitting randomly 

chosen neurons in each iteration during training. We used a dropout probability value of 

0.5 which indicates the probability of a neuron, in the hidden layer, being removed. 0.5 is 

a commonly used value for the hidden layers as it was found to be the optimal probability 

for a wide range of neural networks. (Hinton, 2012) 

 



 

8 

 

 
 

Figure 5: Dropout Diagram.  Source: (Srivastava, 2014) 

 

 

6) Evaluation Metrics 

 

Bleu Score 1 to 4 

 

Bilingual Evaluation Understudy (BLEU) is one of the scoring algorithms used to evaluate 

the quality of text generated or translated by a machine. 

 

The way to calculate using the BLEU algorithm is by comparing the captions with the “n-

gram” method (IBM, n.d.). 

 

Example sentence: “Once you stop learning, you start dying”. 

 

Unigram (1) Bigram (2) Trigram (3) 

Once Once you Once you stop 

you you top you stop learning 

stop stop learning  stop learning, you 

learning learning you learning, you stop 

you you start you start dying 

start start dying  

dying   

 

Table 1: n-gram demonstration 



 

9 

 

 

BLEU will compare each n-gram candidate(predicted) and reference captions and count 

the number of matches. If there are more matches between both captions, the better it is. 

 

For BLEU-1, we will use the unigram. 

For BLEU-2, we will use the bigram. 

For BLEU-3, we will use the trigram. 

For BLEU-4, we will use the n-gram. 

 

Precision is how we determine the score for each caption for the BLEU algorithm. It is 

defined as: 

 
Reference caption: The cat is on the mat. 

Example candidate(predicted) caption 1: the the the the the the the the. 

Example candidate(predicted) caption 2: the cat is mat the on. 

 

Precision for candidate caption 1 is 2/7 (0.28571428571) 

Precision for candidate caption 2 is 7/7 (1) 

 

METEOR 

 

Metric for Evaluation of Translation with Explicit ORdering (METEOR) uses harmonic 

mean of the unigram. METEOR was made to solve the problems found in the BLEU metric 

(Graham et al., 2018). 

 

In METEOR, the score is calculated by having the number of unigrams found in the 

predicted caption that are also in the reference caption and divide it by the number of 

unigrams found in the predicted caption. 

 

ROUGE 

 

ROUGE or known as Recall-Oriented Understudy for Gisting Evaluation, is a metric used 

to evaluate machine translation. Similar to BLEU, ROUGE also uses the n-gram method to 

calculate its precision (Graham, n.d.). 

 

ROUGE-N: Like BLEU-4, it uses unigram, bigram, trigram and higher order of n-gram 

 

ROUGE-L: Measure scores by using the longest matching sequence. Does not use n-gram 

method, as it measures by matching sentences rather than word by word. 

 



 

10 

 

CIDEr 

 

Consensus-based Image Description Evaluation (CIDEr) evaluates caption based on 

consensus. It uses two datasets: PASCAL-50S and ABSTRACT-50S. Each of them 

contains 50 sentences that describes each image. The CIDEr metric uses human judgement 

of consensus (Vedanta et al., 2014). 

 

 

7) Attention 

 

Attention is arguably one of the most powerful concepts in the deep learning field nowadays. 

It is based on a common-sensical intuition that we “attend to” a certain part when 

processing a large amount of information. To process food image, we also applied this 

method to make model generate word more specific and accurate. It is a way to enhance a 

model to choose which part of the image to focus and use to generate sentences. Intuitively, 

we will decide which word is next with aware of the sequence or the order of the word in 

the sentence, so does our model. Our model could be smatter as it needs to consider the 

order of the word and hence focus on certain areas in the image. This is one example from 

GitHub. 

 
Figure 6: Attention Diagram.  Source: (Sgrvined, 2020) 

 

8) Beam Search 

 

We use a linear layer in model to transform the output of decoder layer into a list of scores 

for each word in the vocabulary. Then normally, model will choose the word with the 

highest score and combine all of them to generate a sentence. However, I want to make our 

model consider the words before and after current word. Hence, we brought in Beam search. 

By this method, a k value is set to help model make decision. If k is equal to 3, model will 

firstly choose top three words for first place and then choose words in second place with 

highest score by combining with three words of first place. Model will continue this process 

until it gets top 3 sentences and finally choose the highest one from it. 



 

11 

 

 
Figure 7: Beam Search Diagram.  Source: (Sgrvined, 2020) 

 

9) Word to Vector 

 

To make machine to understand the meaning of words, we need to transform words into 

vectors then all relationships of words could be explained by machine in mathematics 

formulas. This is one example of word to vector map. Based on the complexity of word 

map, the dimension of vector structure could be increased or decreased. For our model, we 

use dimension equal to 300 or 512. 

 

 
Figure 8: Word to Vector Diagram.  Source: (Sgrvined, 2020) 

 

 

 

 



 

12 

 

3.2 Overview of models 

 

To tackle our problem of review generation, we looked at different models used for image 

captioning, as image captioning is a similar problem to ours, having the same type of input 

(image) and similar outputs (text). The three models that we explored are: Model 1 (basic 

CNN-RNN), Model 2 (CNN-RNN with attention, pre-trained InceptionV3 encoder), and 

Model 3 (CNN-RNN with attention, pre-trained ResNet-101 encoder). All these models can 

be found on GitHub. In this section, a detailed overview of the architecture of each model 

will be provided. 

 

Model 1:  

Encoder-Decoder architecture model without attention mechanism (InceptionV3 + LSTM) 

 

- By Aladdin Persson, available at https://github.com/aladdinpersson/Machine-Learning-

Collection. 

 
Figure 9: Overview of Model 1.    Source: (Aladdin Persson, 2020) 

 

Model 1 utilizes a basic CNN-RNN structure, with a CNN encoder that is pre-trained using 

InceptionV3 used to extract the vision features from the input image. The extracted vision 

features are then fed as input into the decoder that is an RNN made up of LSTM cells. The 

decoder is then responsible to generate sequential text outputs, which are then concatenated to 

form the desired review/caption. Thus, the input image passes through the model in the 

following stages: 1) the input image is fed into the encoder and is turned into vision features, 

2) the vision features are then fed into the decoder to be used as the initial input, 3) the decoder 

generates a word at each timestep using the previous time step’s output as input for the current 

time step 4) when the decoder generates an <end> token, the sequence terminates and the 

outputs from each time step are concatenated to form the desired output, i.e.: review/caption. 

Model 1 functions as a barebone model, with not much extra features such as attention 

mechanism or transformers included in its architecture. 

 



 

13 

 

Model 2:  

Encoder-Decoder architecture model with attention mechanism (InceptionV3 + LSTM) 

 

- By yashk2810, available at https://www.analyticsvidhya.com/blog/2018/04/solving-an-

image-captioning-task-using-deep-learning/ 

 
Figure 10: Overview of Model 2.   (Source: Faizan Shaikh, 2018) 

 

Model 2 features a similar CNN-RNN structure as Model 1. Like Model 1, it uses a pre-trained 

InceptionV3 for its encoder. Where it defers from Model 1 is in the addition of an attention 

mechanism built into the decoder, which allows the decoder to focus on relevant parts of the 

image while generating the output for each time step. 

 
Figure 11: Overview of Model 2 attention.   (Source: Faizan Shaikh, 2018) 

 

In this model, it utilises a neural attention mechanism, using a neural network with the ability 

to focus on a subset of the features extracted from the images. The model learns to attend to 

specific parts of the image while generating the word describing that part. With an attention 

mechanism, the image is first divided into n parts, and we compute with a Convolutional Neural 

Network (CNN) representations of each part h1,…,hn. When the RNN is generating a new 

word, the attention mechanism is focusing on the relevant part of the image, so the decoder 

only uses specific parts of the image. 

 



 

14 

 

 

Model 3: 

Encoder-Decoder architecture model with attention mechanism (ResNet101 + LSTM) 

 

 

- By sgrvinod, available at https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-

Captioning. 

 
Figure 12: Overview of Model 3. Source: (sgrvinod, 2020) 

 

Model 3 has a similar CNN-RNN structure as the other two models. Similar to Model 2, it also 

has an attention network built into its decoder so that the decoder is able to know which part 

of the image it should be paying attention to when generating the next word. However, the 

encoder used is a pretrained ResNet-101 instead of the InceptionV3 found in the other two 

models. The decoder consists of LSTM cells, which takes the previous decoder output (or the 

vision feature generated by the encoder in the case of the first time step) and the attention 

weighted image features as input to generate its output for each time step. 

 

 

3.3 Introduction to datasets 

 

Not only the food80k dataset, we also tried to apply our models on general dataset, such as 

Flickr8k and MSCOCO to check the performance of our models on generating captions. 

 

1. Flickr8k 

 

Flickr8k is a set of images for models to train. It is small in size to allow almost all laptops 

and desktops to run without any difficulties. There are up to 8000 images in the dataset. 



 

15 

 

Hence the name, Flickr8k. 

 

There are five captions provided for every image in this dataset as shown below. 

 

 

 

A little girl covered in paint sits in front of a painted rainbow with her hands in a bowl . 

A little girl is sitting in front of a large painted rainbow . 

A small girl in the grass plays with fingerpaints in front of a white canvas with a rainbow 

on it . 

There is a girl with pigtails sitting in front of a rainbow painting . 

Young girl with pigtails painting outside in the grass . 

  

Table 2: Sample of Flickr8k image and corresponding 5 captions 

 

2. MSCOCO 

 

Microsoft Common Objects in Context (MS COCO) is large image recognition/classification, 

object detection, segmentation, and captioning dataset. The dataset contains approximately 

330K images with more than 220k images annotated. In addition, it contains more than 2M 

instances in 80 object categories, with 5 captions per image, and 250,000 people with key 

points. 

 

3. Food80k 

 

Food80k is a set of food images for models to train. It is very big in size so that we need to 

store all images in Nanyang Technological University Electrical and Electronic Engineering 

school’s servers. This dataset contains 45810 test images, 87361 train images and 45856 

validation images. For each image, there are more than one caption. There are some samples. 

 



 

16 

 

 
 

Figure 13: sample of food80k 

 

  



 

17 

 

3.4 Experiments and Evaluation 

 

Model 1: Encoder-Decoder architecture model without attention mechanism (Team 1) 

 

First, we implement the model chosen on Flickr8k dataset, to test the image recognition and 

text generation capabilities. Then we implement it on the food80k dataset for our project task, 

where we did some modifications and experiments, finally we come out with the final output 

of modified model. 

 

A. Output of Original Model 

 

This section shows the quantitative and qualitative results of the original model on Flickr8k 

and Food80k datasets. 

 

Epoch Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR ROUGE_L CIDEr 

10 37.07 21.23 9.74 4.39 13.24 31.53 5.17 

20 43.73 21.97 9.11 4.57 11.01 32.30 6.68 

30 45.02 22.89 9.66 4.88 11.47 32.36 8.83 

40 46.46 22.76 8.25 3.38 11.11 32.12 9.10 

50 45.21 21.94 7.95 3.33 11.01 31.90 8.72 

60 39.75 18.49 6.81 2.80 10.90 30.39 9.18 

 

Table 3: Quantitative Result of original model 1 on Flickr8k 

 

  

Based on the Bleu4 score in the table above, below shows some examples of the images and 

the predicted captions generated for epoch 30 on flickr8k dataset. 

  

  

 

 

 

a soccer player in a red 

uniform is running on the 

field . 

a man in a yellow shirt is 

walking on a rocky path . 

a dog is running through a 

field . 

 

  Table 4: Qualitative Result of original model 1 on Flickr8k 

 

 



 

18 

 

 

Below is a table of the computed scores that tested the original model on Food80k dataset. 

  

 

Epoch Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR ROUGE_L CIDEr 

20 32.30 12.76 4.73 1.88 7.59 17.03 0.93 

40 38.51 15.71 6.09 2.26 7.84 20.16 0.87 

60 25.75 9.49 3.83 1.53 6.03 16.19 0.63 

80 34.16 13.04 4.88 1.89 7.23 19.34 0.65 

100 34.12 15.07 6.41 2.45 7.33 18.89 0.95 

  

 Table 5: Quantitative Result of original model 1 on Food80k 

  

 

The scores computed for epoch 100 are the best. Hence, we will view the predicted captions 

for epoch 100. 

  

 
 

 

i had the chicken and waffles 

and the chicken and waffles. 

the waffles were fluffy and the 

gravy was a little too sweet for 

me. the waffles were fluffy and 

the gravy was a little too sweet 

for me. 

the food was good , but the 

service was great. the food was 

good , but the service was great. 

i 've been here twice now and 

i 've been to a few times now . 

i 've been here twice now and 

i 've been to a few times . i 've 

been here a few times and i 've 

never had a bad experience . 

  

Table 6: Qualitative Result of original model 1 on Food80k 

 

As seen from above, the predicted captions do not accurately describe the images.  

  

Comparing between the captions generated for the Flickr8k dataset and the food review dataset, 

the model generates more accurate captions for Flickr8k. This could be because the food review 

dataset was more challenging. For the food review dataset, the model had to generate a few 

sentences for one caption while for the Flickr8k dataset, it only had to generate one sentence 

for each caption.  

  

 



 

19 

 

B. Modifications made to the model 

  

Some modifications are necessary for the original model, to get the desirable results. The 

reviews expected should be multiple complex sentences, capable of recognizing different 

images and detecting specific objects in the images.  

  

Here are the four main modifications we made to the model: application of GloVe pre-trained 

embeddings, changing the way concatenating information, Disabling ReLU and linear 

transformation, and finally used another way to extract vision features. 

Apply GloVe pre-trained embeddings 

  

Deep learning architectures are unable to process raw text and require numbers as the inputs 

instead. Word embedding is where each word is mapped to a vector. 

  

Pre-trained word embeddings are embeddings trained on large datasets which can then be used 

to solve other similar text classification problems. They are often used due to the lack of 

training data. The dataset needs to have frequently occurring words to build a rich vocabulary. 

Hence, pre-trained word embeddings are commonly used as most datasets have a large number 

of rare words. 

  

In order to cover more words in the corpus of food80k dataset, the pre-trained word embedding 

vectors chosen is Common Crawl, with 840 billion tokens from 2.2 million vocabulary. Each 

word vector is in the dimension of 300. The downloaded filename is glove.840B.300d.txt. 

  

However, such a large set of word vectors may take more time to load in the training process. 

Therefore, a pre-processing of the word vectors is necessary, so that the file containing word 

vectors to load only covers the vocabulary that appears in the food80k dataset. This "word 

extraction" saves loading time and server space but performs exactly the same as loading the 

original word vector file. 

  

To approach this extraction of words, the first step is to get a collection of all the words that 

appears in the food80k dataset. 

  

After the acquisition of a full vocabulary, the corresponding word vectors should then be 

extracted, and generated as a new file, whose name is glove.vocab.300d.txt. The difference is 

obvious that the size of the word vector file is reduced from 5.5G to 84MB. 

  

It is important to do so because in the stage of implementation, we met the error of "No space 

Left on device", as all members in the group are sharing the same server and GPU resource 

from MLDA. Therefore, monitoring the usage of server space, transferring copies to local 

computers, and cleaning files not in use, is crucial to keep the whole project on track, without 

interrupting each other's progress. 

  



 

20 

 

With the help of a python library called gensim, the file with the suffix ".word2vec" was 

generated from the glove.vocab.300d.txt file. This word2vec file could then be loaded and used 

as a dictionary, with words as keys and pretrained GloVe word vectors as values. 

  

After loading the word2vec file, the next task is to set up a weight matrix, as an input to 

torch.nn.Embedding, the function used in decoder to get the word embeddings, so that the 

numerical reviews could be fed into LSTM units. 

  

In the function get_emb, the size of embedding is set to 300, the same as pre-trained GloVe 

word vectors. Another problem occurred that some words in the food80k dataset did not appear 

in the GloVe pre-trained word vectors. In this case, the word vector used in the weight matrix 

is initialised with normal distribution, with samples the same number as the embedding size 

300. 

  

Most words in the vocabulary are covered in the pre-trained word collection. For example, with 

frequency threshold 20, which means only include words that appear more than 20 times in the 

training reviews, the size of vocabulary chosen is 7164, and the number of words covered in 

GloVe is 7106, which means 99.2% of word embeddings are pre-trained is this case. 

  

Eventually is to pass the generated weight matrix as a parameter to word embeddings in the 

decoder. Here, freeze means keeping the weight matrix unchanged through the training, which 

is not desirable. Therefore, a flag is created in the training file called "fine_tune_embedding", 

to indicate whether the weights would be updated while training.  

  

After applying the pre-trained word embeddings to the previous model, the result is not 

improved a lot. Main problems occur again that the model is weak in recognising different 

images, and the sentences generated are quite general, which seems not related to the picture 

input fed in. Below are several examples of generated reviews. 

  

However, after evaluation, both the score and the sample review show that the outcome is still 

not desirable. The possible reason is that although a pre-trained word embedding is applied, 

the model itself remains unchanged. If the weight of word embeddings leans to the words that 

are commonly used in daily language, then it could be even more biased. 

  

This result is in correspondence with the result obtained with Flickr8k dataset. When applying 

the same word embedding to Flickr8k, although there’s not much Flickr8k vocabulary in the 

word2vec file, the outcome does not seem quite different from the one without word 

embeddings applied. 

 

Change the way concatenating information  

  

After applying pre-trained word embeddings to the model, the outcome did not improve a lot. 

Hence, more change has to be made, to try generating better, distinguish reviews for different 



 

21 

 

images. 

  

Therefore, changes are made to the decoder in the way of concatenating information passed to 

generate the final output. In the forward function of the decoder, there is a parameter called 

self.decoder which indicates which decoder is selected for training, where 1 is the original 

decoder and 2 is the modified one.  

  

Considering the performance of these two decoders may both be tested, therefore, the way to 

pass parameters to decoder, was changed from positional arguments to keywords arguments. 

This makes the code of class initialisation longer, since it has to read the corresponding 

parameters from the input dictionary, but it is necessary that different decoder options may 

require different parameters in the setting up stage. It is also easier to modify the code later so 

that if any more parameters are used, it can simply add a key-value pair in the dictionary, 

without major change to the whole model. 

  

Comparing the original decoder, we made two main modifications. One is the information 

passed to the “head” of LSTM units, the other is the hidden layer information passed to the 

linear layer to generate the final output. 

  

Firstly, the information passed to LSTM model has been changed. Previously, the LSTM 

module in decoder takes in the vision features extracted by the pre-trained InveptionV3 as the 

start, then all the numerical word embeddings are appended. So the image features are 

transparent to the decoder output, which is formed from the hidden states, the processed 

outcome of LSTM. 

Now in the modified decoder, a dummy zero vector is created to replace the role of vision 

features in the original model. It is a vector of all zeros, with the same size of pre-trained word 

embeddings, which is 300. Then these vectors go into LSTM to get the result of the hidden 

states.  

  

 
 

Figure 14: RNN Many-to-Many illustration. Source: (Amidi & Amidi, n.d.) 

  

In this graph illustration, a<0> was the features from encoder, now is replaced by a dummy zero 

vector. x<1> to x<Tx> are inputs and y<1> to y<Ty> are outputs, which is the hidden layer here. 

  



 

22 

 

In order to get more distinguished, image-related review text output, the second main 

modification is done, to expose more information to the last linear layer in the decoder. Changes 

are made to the hidden layer, which is the output of LSTM, and the input of the final linear 

layer of the decoder. 

  

 
Figure 15: Concatenation illustration. Created by: Wei Haoran 

  

Here we concatenate the vision features extracted by InceptionV3 in the encoder, to the end of 

the “hiddens”, an output parameter from LSTM, to form a new parameter called “hiddens2”. 

Then “hiddens2” is passed to the linear layer to get the ouput, instead of “hiddens” 

  

In order to perform the concatenation, the vision feature vector has to repeat k times, where k 

is equal to the maximum length of sentences in a batch, plus 1, which is the dummy zero vector.   

  

Unfortunately, the outcome is still not ideal. Same problems occurred that the outcome is 

duplicated, repeating and general.  

  

Disable ReLU and Linear Transformation 

  

After considering the bad outcomes from modification 2, the focus is moved from the decoder 

to the encoder. There are four main functions working: InceptionV3, linear transformation, 

ReLU and dropout. 

  

InceptionV3 is the essential pre-trained part for the model to get the vision features and dropout 

is good in the training process to prevent overfitting. Linear transformation and ReLU are 

decided to disable in this attempt. 

  

A linear transformation is used in the forward propagation of CNN, as the equation below. 



 

23 

 

 
 

Figure 16: Equation of forward propagation in neural networks. 

Source: Analytics Vidhya(Singh, 2020) 

  

Where Z is the output of the layer, X is the input vector, W is the weight matrix and b is for 

bias. Broadcasting is used in matching vector dimensions.  

  

While training, the W and b are updated, through the backward propagation, which is implicitly 

shown in the code, but in the torch.nn Linear function. 

  

The reason we want to disable such transformation in this step is that InceptionV3 itself is a 

complex model, with many parameters to update. Linear transform here may make the outcome 

biased so that it is harder to identify different images for decoder. 

  

ReLU is a commonly used activation function for deep learning, especially in the field of 

computer vision. However, in our case, when calling a saved model to generate reviews for 

validating purposes, the output of the encoder shows lots of zeros, even without dropout in 

testing. 

  

A possible reason for this is that ReLU function takes all negative inputs to zero. If the input 

vision feature has a lot of negative values, then the output is probably a large portion of zeros. 

Therefore the ReLU is removed, to keep the negative information in the InceptionV3. 

  

This is also referred to as the “dying ReLU” problem (Lu & Shin, 2019). When the gradient 

falls to zero, it will never get updated, and some neurons in the network are permanently 

disabled, which is not preferable in our case.  

  

The figure shows modification in the encoderCNN. Here the Linear transformation and ReLU 

functions do not operate on the vision features generated out from the InceptionV3 pre-trained 

model, and only the dropout is used, with a variable indicating the probability of dropout in 

training, dropout_p. 

  

The decoder is modified to fit the dimensions of new outputs from the encoder. The dimension 

of “raw” InceptionV3 features is 1000. After concatenating with hidden layers calculated from 

LSTM with a dummy zero vector as start and pre=trained word embeddings, the dimensions 

of the finalised hidden layer (hidden2 in the code) is [max length of reviews in a batch + 1, 



 

24 

 

batch size, hidden size + 1000]. 

  

After evaluating the model, the problem of over-general reviews and same reviews for different 

images still occur. Meanwhile, plenty of <UNK> tokens are observed in some epochs. Hence, 

the <UNK> token is removed before training to avoid this phenomenon.  

  

A strange observation was that the same modified model would work well on Flickr8k dataset 

but fail to recognise different images for food80k dataset. The scores of the modified model on 

Flickr8k dataset is even higher than the original scores. Hence, the modifications are proved 

working, but do not show much improvement in solving our problem. 

  

Another way to extract InceptionV3 features 

  

After revising the model several more times in the order of concatenating, different activation 

functions used in the encoder, where Leaky ReLU (Sharma, 2019) and PReLU (He et al., 2015) 

tested, the final focus is the way of extracting vision features. 

  

Suggested by Dr. Nguyen, InceptionV3 pre-trained on ImageNet in TensorFlow Keras library 

is used for extraction of image features from the last convolutional layer. Applying necessary 

pre-processing on images, including resizing the image to 299px by 299px and normalization, 

a dictionary is extracted, with image ids as keys and features as values. The features extracted 

have a dimension of 2048, which is much more than the previous 1000 in torchvision models. 

  

With the features of images pre-processed and extracted, the data loader now gets information 

of image features and numerical reviews, instead of images and numerical reviews in the 

previous model. In the encoder part, no duplicated InceptionV3 in PyTorch, but only the 

dropout works to prevent overfitting in training. The decoder takes in features with dimension 

of 2048 and concatenates them to the end of hidden layers from LSTM as before. 

  

C. Result of Modified Model on Food80k 

  

After applying all the four modifications in the previous section, the problems applying the 

original model on Food80k dataset are solved. Now the modified model is able to differentiate 

images and also recognize specific food in the test image. 

  

Here are the quantitative scores as the final outcome of our modified model. 

   

Epoch Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR ROUGE_L CIDEr 

10 21.78 7.69 3.09 1.08 5.24 16.86 0.45 

20 27.25 9.13 3.23 1.20 6.24 17.81 0.58 

30 27.34 9.34 3.59 1.10 5.06 17.45 0.51 

40 32.28 12.05 4.71 1.70 6.56 18.59 0.89 



 

25 

 

50 24.10 8.67 3.11 1.15 5.08 13.98 0.51 

60 19.31 7.24 2.62 0.95 4.71 15.07 0.29 

70 29.16 11.21 4.11 1.48 6.71 17.42 0.74 

80 26.69 10.02 3.81 1.36 5.88 15.64 0.69 

  

Table 7: Quantitative results of modified model 1 

 

Based on Bleu4 scores, the following generated reviews are extracted from prediction on 

validation set in epoch 40. 

  

  

  

 

i had the grilled chicken 

and i had the lamb chop 

and i had to say it was a 

bit dry . i ended up 

getting the lamb chop and 

i had to say it was very 

good . i had the grilled 

brisket and i had to say 
 

i got the burger and it 

was so delicious ! i got 

the burger and it was 

delicious ! i got the 

burger and it was so 

delicious ! 

 

i had the spicy edamame 

and it was quite spicy . i 

had the spicy edamame 

and it was quite spicy . i 

had the spicy edamame 

and it was quite spicy . 
 

i got the thai iced tea 

and i got the thai iced 

tea . i got the thai iced 

tea and i got the thai 

iced tea . i got the thai 

iced tea and i got the 

thai iced tea . 

 

i had the spicy noodles 

and the spicy noodles . i 

had the spicy shoyu 

ramen and it was 

delicious ! ! ! ! ! ! ! ! ! ! ! 

! ! 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

 

I ordered the carne 

asada taco and i got 

the spicy chicken and i 

got the spicy chicken 

and it was very good . 

i ordered the carne 

asada taco and i got 

the truffle fries . i got 

the spicy taco and i got 

the spicy chicken and 

  

Table 8: Qualitative results of modified model 1 

  

Eventually, this final modification performs much better in terms of qualitative predicted 

reviews. Firstly, it has the capability to generate different reviews for different images. 

Secondly, the model can recognise the food in the image. Compared with the previous four 

results, this is the final version outcome of our model. 

  

The reviews generated have repetitive patterns, which may be a result of the simple decoder, 



 

26 

 

which does not have any attention mechanism or advanced transformer model.  

  

There are still some improvements that can be applied to this model. For example, the predicted 

reviews have bias on simple sentences like “the food was good”, “the service was good” and 

the food “chicken and waffles”. Investigation in the dataset and removing some reviews or 

images to balance the weightages of food and distinct sentences in dataset, may be helpful to 

avoid such biased result. 

 

Model 2:  Encoder-Decoder architecture model with attention mechanism in MSCOCO on 

Colab (Team 2) 

 

A. General flow of Model 

 

 
 

Figure 17: General flow of model 2 

 

The figure above shows the general flow of the Image Captioning Model. The model starts 

with importing the required libraries that are essential in generating the image captions. These 

libraries can be found in TensorFlow, which is an open source software library which is 

commonly used in machine learning especially in neural networking models. Following which 

the dataset is being prepared, for this model we would be training on the MSCOCO & Food80k 

dataset. Preparation of dataset includes formatting the dataset file in accordance to the required 

format such that the model is able to read. The model is now able to prepare for its pre-training 

process, for this model we will be using InceptionV3 to extract the features of the model. Once 

the features are being extracted, the model then proceeds to tokenize the original captions 

provided along with each image. By splitting the original captions into individual words, this 

creates tokens which are then added into the model’s dictionary which will be used later on 



 

27 

 

when predicting the captions for the new images. In every machine learning, a training and 

testing set is required so that the users will be able to evaluate the quality of the output, thus 

this model is no different where it splits the datasets(MSCOCO/Food80k) into the training and 

test dataset. After doing so, the model is now ready to initiate its pre-training by feeding its 

data obtained from the feature extraction together with the tokenized dictionary into a decoder. 

The decoder would then produce an output which would be the predicted captions. 

 

B. Comparison of Loss vs Epochs 

 

MS COCO Food80K 

 

 

 

 

 

Table 9: Comparison of Loss vs Epochs on MSCOCO and Food80k 

 

An epoch is defined as the number of passes of the entire training dataset through the neural 

network.  The loss is calculated based off the training and validation, the results are based on 

how well the model is doing between the training and validation sets. The Loss value 

determines how poorly or well a model behaves after each iteration of optimization. The lower 

the loss value, the better the predictions of the model.  

  

From the graphs above, it is observed that the longer we train our model, the lower the loss 

becomes thus, the predictions in generating captions are getting better after each epoch. 

 

 

C. Qualitative Results 

 

The table below shows some examples of the reviews generated by MSCOCO dataset and 



 

28 

 

food80k. 

 

The following table shows the different captions generated by different epoch numbers for the 

same image. On the left column shows the Image and Original Caption. As for the right column 

shows the how the Attention Mechanism attend to the image and what word is generated for 

each attention grid, followed by the 5 generated captions. For the first image, we compare the 

captions generated for epoch 20,40,60,80,100. For the subsequent 4 examples, we use epoch 

100 to generate the predicted captions. This is because epoch 100 has the least loss compare to 

the other epoch numbers tested. 

 

MSCOCO Dataset 

 

 

  

 

 

Original Caption: 

Colorful dishes holding meat, vegetables, fruit, and bread. 

 

Generated Review: 

A plate with fresh vegetables including vegetables in the sides 

in a green field. 

 

Attention Mechanism: 

The attention mechanism allows the model to focus and place 

more “Attention” on the relevant parts of the input sequence as 

needed. For example, the lighter parts highlighted in the image, 

giving it more emphasis to the picture and place more attention 

in identifying a broccoli or salad.   

 

 

Original Caption: 

A young woman enjoying a casual game of Frisbee on a sandy 

beach. 

  

Generated Review: 

A woman prepares to play frisbee. 



 

29 

 

 

 

 

Original Caption: 

Asian noodle soup, served in a bowl with a spoon and 

chopsticks 

  

Generated Review: 

A pizza on a plate with food next to eating utensils. 

 

 

 

Original Caption: 

Several zebras are grazing on a grassy field. 

  

Generated Review: 

A zebra is grazing on grass in the background. 

 

 

 

Original Caption: 

Two orange buses driving past each other on a  street. 

  

Generated Review: 

A bus driving down the street. 

 

 

Food80k Dataset 

 



 

30 

 

  

 

Original Caption: 

Fries are good on their on - I don't think there was a need for the 

nacho cheese topping. So glad Shake Shack is on the west 

coast! ! 

 

Generated Review: 

This is amazing but the eggs scrambled eggs and it was not 

served up a lot of the chicken taco the only item so on bbq this 

chicken and it was amazing but the rice it’s not a <unk> couple 

places in hand and on the best thing we had a crispy golden 

vegetables my boyfriend is amazing but the beef roll it was 

amazing but i didn’t have to come back to comeback to be there 

around. 

   

 

Original Caption: 

i went with a group of co-workers/friends so we ordered a lot of 

different things. seafood ceviche 3/5 stars mexican street corn 

(side dish) 5/5 stars guacamole 4/5 stars queso bandito 5/5 stars 

pulled chicken flautas 4/5 stars chicharron & arugula 5/5 

enchiladas (chicken and beef) 4/5 tacos (all of 

  

Generated Review: 

i was very nice and served with all over 10 12 10 

 

 

 

Original Caption: 

Let's start with some observations ... The fire department folks 

eat here (good sign). Two busy windows for hot food slamming 

out of the kitchen (another good sign). 

  

Generated Review: 

in your run out right together 

 



 

31 

 

 

Original Caption: 

Read on to find out why! My fiance and I came here for my 

birthday. And with my friend's recommendation from before I 

was excited and had high expectations. 

  

Generated Review: 

the french sausage and i enjoyed our taste the food 

 

Original Caption: 

the fries were all the space with fries in my needs 

  

Generated Review: 

the fries were all the space with fries in my needs 

 

From the results obtained for the MSCOCO and food80k dataset, it can be seen that the captions 

generated for the MSCOCO dataset was relatively accurate as compared to the captions 

generated for food80k. The inaccuracy for the captions generated for food80k is possibly due 

to the dataset being biased to a certain dish causing the model to generate more generation on 

that particular dish as soon as it deems slightly similar to the biased dish. For example, a piece 

of meat could be identified as sausage rather than a steak. However, if the dataset contains 

many pictures of burgers, it will identify burgers correctly. As a result, coming to a conclusion 

is that, having a wider variety of food images and possible longer training time, we could have 

yielded better results.  

 

D. Problems encountered 

 

The model encountered multiple timeout error as it was running on Google’s Colab. The 

timeout was mainly caused by the limitation of the ram size of 12.72GB available to each user. 

Therefore, the model was not able to run large dataset size or high epoch value. The maximum 

dataset size that was managed was 6000 images and a maximum of 100 epoch per execution. 

  

As the Colab uses Google’s Drive for storing the dataset instead of the local drives. Colab was 

unable to read a single dataset file, therefore the dataset was splitted into 10 smaller subfolders.  

  

The nature of the given review dataset was more challenging as compared to MS COCO dataset. 

This is because MS COCO dataset was designed to help train image captioning models. As for 

the review dataset, there was multiple images that did not have caption that describe the image, 

rather it was describing the events that was happening which was not constructive in training 



 

32 

 

the model. Each image also had multiple captions tagged to the same image. At random 

sampling, the dataset can also be found to be biased to a certain dish causing the model to 

generate more generation on that particular dish as soon as it deems slightly similar to the 

biased dish. 

 

 
Figure 18: Error occurred on Google Colab 

 

When extracting the features from the images, at times, an input/error will occur which we will 

need to re-run the code. This posed a challenge as this error occurred several times during a 

single run. 

 



 

33 

 

 
Figure 19: Error occurred on Google Colab 

 

Similarly, an input/output error. This may be due to having a large file size. As directed by the 

potential problem, we divided the images into subfolders, however the problem persists. 

 

 
 

The solution we tried is by dividing the images based on their image id into smaller subfolders 

instead of a large folder by itself. 

 

 
Figure 20: Preview of Subfolders created 

  



 

34 

 

Model 3:  Apply encoder and decoder framework model with attention in food80k (Team 3) 

 

Evaluation is done to attempt to quantify our model’s performance by comparing the set of 

reviews generated by our model (the “predictions”) against the actual reviews contained in the 

original dataset (the “ground truth”) for each images. Thus, we will be considering 6 different 

metrics generated using different algorithms, namely BLEU1-4, CIDEr, and ROUGE, with 

BLEU-4 being the main metric used when comparing the performance across different models, 

as it is a very widely used metric in the field of natural language processing and has also been 

shown to correlate well with human judgement [1] when it comes to accessing similarity 

between the prediction set and the ground truth. 

 

For each experiment, the trained models are first evaluated on every 5-10 epochs based on the 

maximum epoch achieved during training. At this stage, the evaluation is done on the validation 

set. This data is then used to choose highest scoring epoch to be used as the prediction model 

for that particular experiment. This chosen model is then evaluated on the test set, and the result 

obtained can then be used to compare the model with those obtained from different experiments. 

The chosen model is also the one used to generate reviews that can be manually looked through 

by humans to get an actual understanding of how it actually performs, as a higher score may 

not always correlate with better reviews as perceived by humans. 

 

A. Comparison of beam sizes 

 

Beam search is used by the model when generating an output. During each time step, the 

decoder outputs scores for each word in the vocabulary. Instead of using greedy search, which 

is to pick the highest scoring word at each time step, beam search allow us to keep track of n 

number of the highest sentences as the model generates the review, thus allowing us to pick the 

sequence with the highest overall score only once all n sequences terminate. This number n is 

referred to as the beam size. Thus, it is clear that beam size will be an important parameter to 

consider, as having a larger beam size will help us to obtain better reviews as well as have more 

variety in them. However, having too large of a beam size will affect performance as more 

memory and calculations need to be done. From our experiments, we have also found that the 

performance starts to drop past a certain beam size, as shown in Table 10. 

 

Beam 

size 

Bleu_1 Bleu_2 Bleu_3 Bleu_4 ROUGE_L CIDer 

1 35.20 15.40 6.70 2.80 19.10 1.20 

3 39.80 17.60 7.80 3.30 20.20 1.80 

5 39.90 17.60 7.80 3.40 19.10 1.90 

7 41.30 17.50 7.10 3.00 18.10 1.90 

10 40.70 17.00 6.80 2.90 17.80 1.80 

 

Table 10: Comparison of performance between different beam sizes 

 

Table 10 shows the evaluation score of the output generated by the same model checkpoint, but 



 

35 

 

with different beam sizes. It is clear to see that the score increases as beam size increase, up to 

a beam size of 5 after which the performance starts to drop. Based on these results, we have 

concluded that 5 is the optimal beam size to be used. 

 

 

B. Comparison between Fine-tuning and freezing image encoder 
 

The image encoder used in our model is a pretrained encoder initialised with weights obtained 

from ResNet-101. Thus, we have the option of either leaving the image encoder as is by 

freezing it, or to fine-tune it during the training process. By default, fine-tuning was set to off, 

meaning the encoder is frozen during training.  

 
 

Bleu_1 Bleu_2 Bleu_3 Bleu_4 ROUGE_L CIDEr 

Fine_tune on 36.5 16.0 7.0 3.1 18.6 1.4 

Fine_tune off 39.9 17.6 7.8 3.4 19.1 1.9 

 

Table 11: Comparison of performance with encoder fine-tuning on and off 

 

We found that the model performs better with the encoder frozen, perhaps because the initial 

weights imported from ResNet-101 were already well-optimised, and any further changes only 

lead to worse performance. 

 

 

C. Comparison between different wordmap sizes 

 

The wordmap is the dictionary that maps each word in a reference sentence into a unique 

number to be fed into the model as input. Thus, the size of the wordmap determines the size of 

the model’s vocabulary. The method to control the size of the wordmap is by setting a threshold 

for the minimum amount of times a word has to appear in the training set before it is considered 

as a valid entry in the wordmap. A higher minimum frequency would lead to a smaller wordmap 

and vice versa. Thus, by limiting the amount of vocabulary the model has to consider during 

training, hopefully we will be able to train the model to favour more popularly used words used 

by humans when reviewing, while still maintaining enough word diversity to prevent generated 

reviews from being dull. 

 

We also experimented with two different methods of tokenizing sentences, the first one being 

a simple method that utilizes python’s built-in .split() method to split apart words separated by 

spaces, and the second method utilizes the Tokenizer function available in the Natural 

Language Toolkit (nltk). The main difference between these two methods is that the first 

method considers a word followed by a punctuation together as one word, while tokenizer splits 

them into two words (eg: “the food, is good!” into [“the”, “food,”, “is”, “good!”] vs [“the”, 

“food”, “,”, “is”, “good”, “!”] ). 

 

The table below shows the evaluation score obtained from using the best epoch to generate 



 

36 

 

reviews for the test set, based on different word map sizes as well as different tokenization 

methods. Since the wordmap size of 8000 paired with the simpler .split() method performed 

the best in terms of Bleu-4 score, we decided to use this method of generating the wordmap 

that is used in our final model. 

 

Wordmap size Bleu_1 Bleu_2 Bleu_3 Bleu_4 ROUGE_L CIDEr 

3000 (split method) 39.90 16.93 7.09 2.99 18.73 1.84 

5000 (split method) 39.64 17.20 7.29 3.09 18.75 1.92 

8000 (split method) 39.45 17.05 7.33 3.18 18.85 1.79 

1000 (nltk tokenizer) 40.49 17.13 7.16 2.97 19.05 1.50 

4000 (nltk tokenizer) 38.99 15.84 6.32 2.62 17.34 1.43 

5000 (nltk tokenizer) 35.42 15.38 6.40 2.68 16.78 1.25 

 

Table 12: Comparison between different wordmap sizes and tokenization methods. 

 

 

D. Comparison between pre-trained word-embedding and default values 

 

This experiment is completed based on tokenization mentioned above and GloVe, pre-trained 

word-embedding. GloVe is an unsupervised learning algorithm for obtaining vector 

representations for words. As we have word embedding layer in our model, we apply “word to 

vector” method to transfer words into different vectors in a word map. Therefore, we need to 

initialize values for our words in word map before we start training. By default way, all these 

words are initialized with value 0 in word map length times embedded dimension matrix 

( normally word map length times 300 ). Then all these 0 will be set specified values while 

training our model by backward propagation. With GloVe, we could have pre specified values 

and then reduce the time to reach the expectation. In this experiment, we used word map 5k 

and 8k, and 1. Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB) and 

2. Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB). To prevent 

overloading the memory of CUDA by importing the GloVe dataset, we filtered out a new GloVe 

dataset with word map which means we disposed words of GloVe if they do not appear in word 

map. After all these preparation, we load this new GloVe dataset into embedding layer at the 

beginning of the whole traning process. 

 

The table below shows the score obtained from using 5k and 8k word map with GloVe.  

 

Dimension = 42B 

Wordmap size  Bleu_1 Bleu_2 Bleu_3 Bleu_4 

5000 (nltk tokenizer) 33.6 13.8 5.7 2.4 

8000 (nltk tokenizer) 35.9 15.0 6.1 2.6 

 

Dimension = 840B 

Wordmap size  Bleu_1 Bleu_2 Bleu_3 Bleu_4 

5000 (nltk tokenizer) 31.4 13.2 5.4 2.3 



 

37 

 

8000 (nltk tokenizer) 34.8 14.1 5.6 2.4 

 

Table 13: Comparison between different GloVe token sizes 

 

Due to the limitation of time, we cannot choose every model to do comparison then we choose 

model with GloVe in 5k word map to compare with result in comparison 3. 

 

Wordmap size  Bleu_1 Bleu_2 Bleu_3 Bleu_4 

5000 (nltk tokenizer with 42B GloVe) 33.6 13.8 5.7 2.4 

5000 (nltk tokenizer with 840B GloVe) 31.4 13.2 5.4 2.3 

5000 (nltk tokenizer) 35.42 15.38 6.40 2.68 

 

Table 14: Comparison between GloVe and default embeddings, with 5k wordmap size 

 

We figure out that our model performance even poorer then training without GloVe. This result 

may be caused by situations applied. For GloVe, it is a general situation, but our model is 

specified for food image only. 

 

E. Quantitative Results 

 

The best settings from each experiment discussed in the previous sections were then combined 

to train our final model, i.e. the model trained with frozen encoder, wordmap size of 8000 

generated with split method, without GloVe embeddings, and a beam size of 5. The score 

obtained for this model is given as below and is the highest score we have obtained so far. 

 

Bleu_1 Bleu_2 Bleu_3 Bleu_4 ROUGE_L CIDEr 

39.45 17.05 7.33 3.18 18.85 1.79 

 

Table 15: Quantitative Results of model 3 

 

F. Qualitative Results 

 

The table below shows some examples of the reviews generated by our final model. 

 

i ordered the chicken pad 

thai and it was really 

good. i had the pad thai 

and it was the best i've 

ever had. the service was 

great and the food was 

delicious. 
 

it was a little too 

sweet for me but i 

think it was a little 

too sweet for my 

tastes. i had the 

chocolate lava cake 

and it was a little too 

sweet for my taste. it 

was a little too sweet. 



 

38 

 

 

the burger was good but 

not the best i've ever had 

in my life. the meat was 

tender and juicy and the 

meat was tender and 

juicy. the fries were good 

too. 

 

we ordered the 

pepperoni pizza and 

the pepperoni pizza. 

the pizza was good, 

but it was a little too 

salty for my taste. it 

was a bit bland for 

me. 

 

i ordered the tonkotsu 

ramen and it was really 

good. the noodles were 

cooked well and the meat 

was tender. the broth was 

rich and creamy. 

 

i had the pleasure of 

dining at this 

location and it was 

my first time here 

and i was excited to 

try it out. i had the 

beef brisket 

sandwich with a side 

of rice and it was 

delicious. 

 

the crust was very thin 

and the crust was a little 

on the dry side. the pizza 

was good but not the best 

pizza i've ever had. it 

was a little too salty for 

my taste. 
 

i had the chicken 

fried steak and it was 

very good. the 

chicken and waffles 

were the best i've 

ever had. it was a 

little too sweet for 

my taste 

 

i had the salmon and my 

husband had the lobster 

risotto. i had the filet 

mignon and it was 

cooked to perfection. the 

steak was cooked to 

perfection. 
 

it was a little too 

sweet for my liking. i 

don't know if i would 

like to go back to try 

the other items on 

the menu. 

 

Table 16: Examples of reviews generated by the model 

 

As seen in the table, the model is capable of generating reviews that are mostly grammatically 

correct, with well-defined sentence structures and clear flow of ideas between sentences. In 

most cases, it is able to detect the specific food item contained in the image (or at least 

something close to it). For example, it is able to recognize the burger, pad thai and ramen in 

the images above. It is also able to generate relevant descriptions to the food it is shown, such 

as claiming “the broth was rich and creamy” and “the noodle were cooked well” for the image 

of the ramen. Furthermore, it is able to express its opinions in the reviews, such as claiming 

that certain foods were the best that it ever had, or that they were too sweet or bland.  

 



 

39 

 

However, there are also times when the model fails to correctly recognize the food item shown 

in the image, as seen in the fifth image on the left of the table. Sometimes, the review generated 

also contradicts itself, for example in the fourth image in the right of the table where the model 

generates a review stating that the chicken and waffles were the best it ever had, but then later 

contradicting itself by saying that it was too sweet for its taste.  

 

Another aspect that may need more work is the generation of generic reviews that have no 

connection to the actual image used as input. This is shown by the review generated for the 

image in the bottom right of the table. While these reviews are completely valid and may even 

be a good representation of how some humans write their reviews, these types of reviews are 

not what we are looking for, as they provide little value to the user. We would hope that the 

model would attempt to identify specific food items for every image, even if they turn out to 

be incorrect.  

 

  



 

40 

 

 

4. Schedule 
 

PHASE Planned Milestone Date Actual Milestone Date 

Initiating Phase Week2  Week2  

Planning Phase Week2 Week2 

Execution Phase Week3 to Week11 Week3 to Week11 

Closing Phase Week12 to Week13 Week12 to Week13 

Project End Date 13 Nov 2020 13 Nov 2020 

 

We strictly follow the schedule and deliver good results. By this project, we fully understand 

how to design and plan a project, and also we learn much knowledge about machine learning. 

 

5. Cost 
 

We do not have cost in this project. 

  

 

6. Outcomes 
 

In this project, we explored three models which are mentioned above and each team has 

independent outputs. Based on what we can see in the evaluation part, the model could describe 

the food and also provide some human feeling related captions. Although there are still some 

limitations, due to the limitation of the time, I have no more time to improve it. Hopefully, we 

could deliver this model to our school and finish our project. 



 

41 

 

 

7.  Reflection  
 

Team 1 
 

Sim Yu Qian, Claire 
 

From this project, I gained a deeper understanding about deep learning. As it was something 

new to me, I had to read up on the topic a lot and watch tutorials to understand better. When 

training the model, I ran into a few problems as I did not have some of the libraries installed. 

After searching the internet, I learnt how to install the libraries and also made modifications to 

the code so that it could run.  

 

I also learnt how to run the codes on Google Colab and on the school’s server. As I was new to 

using the school’s server, I had to read up on Linux commands and also watch YouTube videos. 

Thanks to Hongyu who shared with us a tutorial video he did on how to use the server, I 

managed to navigate the server smoothly and run the codes on it. Hence, this project taught me 

a lot of new skills in a short amount of time. It also taught me teamwork where I got to interact 

and work with my groupmate, Haoran. I am thankful for my groupmates as they created a 

supportive environment where everyone is willing to share their knowledge with each other. If 

any of us were to face difficulties when doing the tasks individually, we would then discuss 

and try to solve them together. Overall, I learnt to be a more independent learner and how to 

work in a team. 

 

 

Wei Haoran 

 

This DIP project is the most challenging project that I have ever done, but also the most 

beneficial one. As it is the first time I touched deep learning, I researched on the structures and 

mechanisms of CNN and RNN model a lot. Apart from this project, I also went through some 

supplementary online courses from Coursera and Kaggle, which provided me with a clearer 

overview of a deep learning project. Fortunately, when the project is completed, I even grow 

more interest in deep learning and data processing. 

 

Teamwork in this project maximizes efficiency and encourages self-learning. All of six 

members of our group are divided in three subgroups, and each group works in parallel, which 

encourages everyone to engage and learn, and avoid free riders. In our subgroup, not only 

professional, but also good personal friendships are established between Claire and me. Every 

week after meeting and reporting, we would start a subgroup meeting to discuss what to do this 

week, regarding the current process and suggestions from Dr Nguyen. 

 

My programming skills have been improved a lot by this project. Firstly, My Python 



 

42 

 

programming skills were largely improved, and I gained valuable experience on object-

oriented programming, and learnt how to handle many files with different functions. Secondly, 

our subgroup worked on various platforms and environments: Windows 10 OS, Google 

Colaboratory and Google Drive, Linux virtual machines. I also learnt how to use MLDA GPU 

resources from Chen Hongyu, which is very helpful in deep learning project with a lot of 

calculation works. Thirdly, operating on a shared server helped me know how to avoid collision 

with others, such as clearing the server space usually, and utilizing different GPU resources to 

ensure everyone’s memory usage.  

 

In the beginning stage, we were quite fast in obtaining results from the model we chose on 

Flickr8k dataset for text generation test. Right after moving on our target dataset, food reviews, 

we met problem of generating the same reviews from different input images. However, none 

of our subgroup members gave up, and we tried a lot of modifications to figure out what was 

wrong with the model.  Special thanks to Dr Nguyen, who is really patient and helpful, when 

our subgroup stuck in the problem of generating the same reviews for different images, he took 

his time to go through our codes and helped us out of trouble. Finally, we successfully worked 

out desirable outcomes with Dr Nguyen’s suggestions and resources.  

 

If I have the opportunity to work on another deep learning project next time, I would spend 

more time in the primary stage, to investigate in the characteristics of the model, and create 

more functions in favor of following stages. Additionally, I would try some version control 

tools, such as GitHub, to avoid overwriting and improve in collaboration with other group 

members. 

 

 

 

Team 2 
 

Kelvin Ng Hon Seng  

 

Having gone through this design innovation project, it provided me with the opportunity to 

have a better understanding towards machine learning, specifically image review generation. 

Writing reviews can be demanding and time consuming, thus there was a need to automatically 

generate reviews, in our case, generating reviews on food. As a picture is worth a thousand 

words, there are many ways for the machine to generate reviews, thus our team decided to 

explore three different models to compare which model yielded the best results.  

 

To start, we divided ourselves into three subgroups tackling on a model. We explored different 

models using the flicker and MSCOCO dataset. Subsequently, we explored and learned how to 

tune and adjust the model to fit in our given dataset on food. Out of the many programming 

software available, I chose to use Google Colaboratory as it allows users to write and execute 

codes without the need to install packages thus, making it hassle free and user friendly. This 

was a good alternative for those that want to start on machine learning and data analysis like 

myself. I have learnt the different types of neural networks such as convolutional neural 



 

43 

 

networks (CNN) and recurrent neural networks (RNN) which was implemented in this model. 

These two neural networks are essentially the brain behind generating reviews for image 

captioning.  

 

Throughout this course, the learning journey was not an easy as I was new to the concept of 

machine learning. Overall, coupled with time constraints and complex terminologies and 

content of machine learning, I found it challenging to understand and execute the project well. 

This resulted me in sourcing for my own learning materials from the web and my peers to keep 

up with the rest of my team members. This was not always sufficient as the learning curve was 

steep and integrating the review dataset on the model required some adjustments to the code 

which prompted some errors and resulted in me finding solutions to those errors where I needed 

to understand more in depth about certain concepts and how these changes will affect the model 

and overall program.  

 

However, my challenges were mitigated by my supervisors and team members. They were very 

encouraging and helpful throughout the entire course of the project. They provided me with 

feedback and solutions on how to tackle the errors in my code as well as guided me on how 

certain syntax and codes had to be written.  

 

In future, if I were to face with a similar project or problems, I would consult my team leader 

or supervisor more often to clarify any doubts so as to prevent myself from lagging behind. 

Since it is a group project, everyone’s contribution is equally important in making this project 

a success.  

 

 

Yuuki Ikeda 

 

After this Design Innovation Project, I was able to better understand the capabilities and the 

benefits that image captioning has and will provide to the society. 

 

Before the model is able to generate a caption, multiple steps had to be implemented to train 

the model. These steps played an important role, as how the model is trained could affect the 

quality of the produced caption. In the first step, dataset preparation, I noticed that there were 

multiple images in the dataset that had captions which was not constructive to the training of 

the model as the caption was not describing the food nor describing the service quality that was 

received. This might have caused the model to output irrelevant description. 

 

Our model is based on the current Image Captioning models, the Image Captioning models are 

able to provide description of subjects in the image and in more advanced models the models 

are able to describe the actions that these subjects are doing. Using the Image Captioning model 

the group tried to explore ways to improve the generated captions and on top of that,  went a 

step further to generate captions that are able to describe the experience that diners had at the 

restaurants. 

 



 

44 

 

Task allocation to the team was great, the group was split into three teams which allowed us to 

have an ample amount of opportunities to explore and work on problems that I had with my 

model. As I am not as fluent in the python programming language, my teammates were very 

understanding and patient by providing general guidelines and pointers on how I can improve 

on my model. 

 

Given more time, I think we could work on improving the grammar structure of our model. 

This is so that it will generate more human-like sentences. 

 

In conclusion, this project has given me the opportunity to improve my knowledge on machine 

learning. I am able to better understand the machine perspective on how they see each image 

using the encoder to generate features.  

 

 

Team 3 
 

Chen Hongyu  

 

The DIP project gives me an opportunity to run a project as a group leader which makes me 

learn more than the knowledge included in a project only. At the very beginning, I am very 

confused with the purpose of the project. I was not sure we are going to develop a completed 

and perfect model or making sure everyone could catch up with each other because each 

teammate has different coding background. With Mr. Nguyen’s suggestion, we were divided 

into three different teams and different teams has different goals per week. This management 

nicely resolve our problem. By this way, we could deliver good model at the end and make 

sure everyone could learn as much as they can. Thankfully, all of my teammates are motivated 

and responsible which helps us follow our schedule. Along the way, I am learning to be more 

responsible and helpful to my teammates. Thank support from my teammates and also Dr. 

Nguyen. Back to the project itself, this is my first project related to Natural Language 

Processing. It is a wonderful experience to learn about Recurrent Neural Network, many related 

mechanisms and also these special evaluation tools such as bleu and CIDEr. With this 

experience, I believe that I could do better in FYP and projects of my career life. 

 

 

Neo Zhen Ting 

 

Throughout this DIP project, I was able to learn a lot about machine learning algorithms and 

technique, such as how RNNs and CNNs work, especially in the field of computer vision and 

natural language processing. More importantly, I was also able to put some of the knowledge 

that I learned into practice to design a model that is able to suit our specific needs (review 

generation). Furthermore, I also learned a lot about the hardships involved in a machine 

learning project, including the collection and cleaning of datasets, the training of models which 

takes time and GPU resources, tuning of parameters, model evaluation, selection of models, 

and so on. This gave me a much deeper appreciation of the machine learning/artificial 



 

45 

 

intelligence field, along with what it is capable of doing, and also what some of its limitations 

are. Thus, I feel incredibly grateful to be able to work on this project as I was able to get a brief 

glimpse into what it would be like working in the field of machine learning. Regardless of 

whether or not I choose to continue to pursue this path in the future, I believe that the 

experiences I obtained from this project would be immensely valuable, as it has also taught me 

a lot about working in a team, work ethics, as well as problem solving.  

8. References  
 

 

Aladdin, P. (2020, July 13). Pytorch Image Captioning Tutorial. YouTube. 

https://www.youtube.com/watch?v=y2BaTt1fxJU&feature=youtu.be 

 

A. Maheshwari, “Image Captioning using Keras (in Python),” OpenGenus IQ: Learn 

Computer Science, 27-Nov-2019. [Online]. Available: https://iq.opengenus.org/image-

captioning-using-keras/. 

 

Baig, M. M. A., Shah, M. I., Wajahat, M. A., Zafar, N., & Arif, O. (2018, December). Image 

caption generator with novel object injection. In 2018 Digital Image Computing: 

Techniques and Applications (DICTA) (pp. 1-8). IEEE. 

 

Bossard, L., Guillaumin, M., & Van Gool, L. (2014, September). Food-101–mining 

discriminative components with random forests. In European conference on computer 

vision(pp. 446-461). Springer, Cham. 

 

Chang, H. H., & Meyerhoefer, C. D. (2020). COVID‐19 and the Demand for Online Food 

Shopping Services: Empirical Evidence from Taiwan. American Journal of Agricultural 

Economics. 

 

Faizan ShaikhFaizan “Automatic Image Captioning Using Deep Learning,” 15-May-2020. 

[Online]. Available: https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-

captioning-task-usng-deep-learning/. 

 

Google. (n.d.). Advanced Guide to Inception v3 on Cloud TPU. Google Cloud. 

https://cloud.google.com/tpu/docs/inception-v3-advanced 

 

Graham, Y. (n.d.). Re-evaluating Automatic Summarization with BLEU and 192 Shades of 

ROUGE. 

https://pdfs.semanticscholar.org/333f/98412ff246cd646551b4ca6f4b059dc1ea81.pdf 

 

Hinton, G. E. (2012, July 3). Improving neural networks by preventing co-adaptation of 

feature detectors. https://arxiv.org/pdf/1207.0580.pdf 

 

IBM. (n.d.). BLEU: a Method for Automatic Evaluation of Machine Translation. 

https://www.youtube.com/watch?v=y2BaTt1fxJU&feature=youtu.be
https://iq.opengenus.org/image-captioning-using-keras/
https://iq.opengenus.org/image-captioning-using-keras/
https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-captioning-task-usng-deep-learning/
https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-captioning-task-usng-deep-learning/
https://cloud.google.com/tpu/docs/inception-v3-advanced
https://pdfs.semanticscholar.org/333f/98412ff246cd646551b4ca6f4b059dc1ea81.pdf
https://arxiv.org/pdf/1207.0580.pdf


 

46 

 

https://www.aclweb.org/anthology/P02-1040.pdf 

 

J. Cohen, “Recurrent Neural Networks (RNNs) in Computer Vision: Image Captioning,” 

Medium, 04-Jun-2020. [Online]. Available: https://heartbeat.fritz.ai/recurrent-neural-

networks-rnns-in-computer-vision-image-captioning-ea9d568e0077. 

 

Jyotishp, “Introduction,” neural. [Online]. Available: https://neural-captioning.jyotishp.ml/. 

 

Kagaya, H., Aizawa, K., & Ogawa, M. (2014, November). Food detection and recognition 

using convolutional neural network. In Proceedings of the 22nd ACM international 

conference on Multimedia (pp. 1085-1088). 

 

Lai, H. H., Lin, Y. C., & Yeh, C. H. (2005). Form design of product image using grey 

relational analysis and neural network models. Computers & Operations Research, 32(10), 

2689-2711. 

 

Lu, L., & Shin, Y. (2019, March 15). Dying ReLU and Initialization: Theory and Numerical 

Examples. arxiv.org. https://arxiv.org/abs/1903.06733 

 

Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A 

study of customer reviews on Amazon. com. MIS quarterly, 185-200. 

 

Pai, A. (2020, March 16). An Essential Guide to Pretrained Word Embeddings for NLP 

Practitioners. https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-

embeddings-nlp/ 

 

Peng, M. L. (2018, May 7). Improving neural networks by preventing co-adaptation of 

feature detectors.  https://medium.com/@lipeng2/dropout-is-so-important-e517bbe3ffcc 

 

Prabhu. (2018, March 4). Understanding of Convolutional Neural Network (CNN) — Deep 

Learning. Medium. https://medium.com/@RaghavPrabhu/understanding-of-convolutional-

neural-network-cnn-deep-learning-99760835f148 

 

Rozin, P., Fischler, C., Imada, S., Sarubin, A., & Wrzesniewski, A. (1999). Attitudes to food 

and the role of food in life in the USA, Japan, Flemish Belgium and France: Possible 

implications for the diet–health debate. Appetite, 33(2), 163-180. 

 

S. C. -, “What is Feature Extraction? Feature Extraction in Image Processing,” 

GreatLearning, 03-Nov-2020. [Online]. Available: 

https://www.mygreatlearning.com/blog/feature-extraction-in-image-processing/. 

 

Srivastava, N. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. 

30. https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf 

 

https://www.aclweb.org/anthology/P02-1040.pdf
https://heartbeat.fritz.ai/recurrent-neural-networks-rnns-in-computer-vision-image-captioning-ea9d568e0077
https://heartbeat.fritz.ai/recurrent-neural-networks-rnns-in-computer-vision-image-captioning-ea9d568e0077
https://arxiv.org/abs/1903.06733
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://medium.com/@lipeng2/dropout-is-so-important-e517bbe3ffcc
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


 

47 

 

Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image 

caption generator. In Proceedings of the IEEE conference on computer vision and pattern 

recognition (pp. 3156-3164). 

 

Wilcock, A., Pun, M., Khanona, J., & Aung, M. (2004). Consumer attitudes, knowledge and 

behaviour: a review of food safety issues. Trends in Food Science & Technology, 15(2), 

56-66. 

 

Zafra, M. (n.d.). Understanding Convolutions and Pooling in Neural Networks: a simple 

explanation. Towards Data Science. https://towardsdatascience.com/understanding-

convolutions-and-pooling-in-neural-networks-a-simple-explanation-885a2d78f211 

  

https://towardsdatascience.com/understanding-convolutions-and-pooling-in-neural-networks-a-simple-explanation-885a2d78f211
https://towardsdatascience.com/understanding-convolutions-and-pooling-in-neural-networks-a-simple-explanation-885a2d78f211


 

48 

 

Appendix 
 

 

Project Members Information 

 

 

 Name Project contributions Report Contribution 

1 Chen Hongyu 
Group Leader, treasurer, group report 

editor 

Section 1,2  

Section 3.1 

Section 3.3.1  

Section 3.4 team3  

Section 4,5,6,7 (reflection of 

Chen Hongyu),8,9 

2 Neo Zhen Ting  

Team 3 Member, DIP competition 

presenter, project demo 

 

Section 3.2 (pg 12-14) 

Section 3.4 Team 3 A-C, E,F 

(pg34-35, pg 37-39)  

3 Wei Haoran 

Team 1 Leader, Modifications and 

evaluations on Team 1 model, Group 

report formatter 

Section 3.2 Model 1(Pg.12), 

Section 3.4 Team 1 (Pg.17-26), 

Concatenation Illustration 

(Figure 15), Reflection (Pg.41-

42) 

4 Sim Yu Qian, Claire 
Team 1 Member, Training and 

validating on Team 1 model 

Section 3.1 1-6 (Pg. 5-10), 

Section 3.3.1(Pg.14-15), Section 

3.4 Team1 A (Pg. 17), 

Reflection (Pg.41) 

5 Kelvin Ng Hon Seng 
Team 2 Leader, Modifications and 

Training  

Pg.13 (Attention Mechanism) 

Pg.15 (MSCOCO),  

Pg.26(Figure17) 

Pg.27-29 

Pg.32-33 

Pg 42-43 (Reflection) 

6 Yuuki Ikeda 

Team 2 Member  

Model Exploration 

Implementation of InceptionV3 

Error Debugging  

Pg.26 (General Flow of Model), 

Pg.27 (Comparison of Loss Vs 

Epoch), Pg.30-31 (Qualitative 

Result, Food80k), Pg.31-33 

(Problems Encountered), Pg.43-

44 (Reflection)  
 

  

 

 

 

 

 


